Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
AoB Plants ; 15(5): plad066, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37899979

RESUMO

Bromeliaceae display many water-use strategies, from leaf impounding tanks to Crassulacean acid metabolism (CAM) photosynthesis and absorbing trichomes. Recent studies show that trichomes in inflorescences of bromeliads can exude viscous secretions, protecting against various stresses, including excessive water loss. In light of this, and considering the knowledge gap regarding inflorescence trichomes in bromeliads, we aimed to investigate the presence, source and chemical nature of inflorescence secretions in species of the Tillandsioideae (Bromeliaceae) and to describe the anatomy of their floral bracts focusing on trichome structure and position. We conducted a prospection of secretory activity and anatomy in floral bracts in 52 species of Tillandsioideae and 1 early divergent Bromeliaceae species. We used histochemical tests to investigate the presence and nature of secretion combined with standard light microscopy methods. Secretion appears in all studied species of tribe Vrieseeae, in Guzmania species, Wallisia cyanea, Tillandsia streptopylla (Tillandsieae) and Catopsis morreniana (Catopsideae). It is absent in Vriesea guttata (Vrieseeae), Racinaea crispa and various Tillandsia species (Tillandsieae). Secretion is produced by peltate trichomes on the adaxial surface of young bracts and comprises hydrophilic and lipophilic substances. Bract anatomy revealed an internal mucilage-secreting tissue with wide distribution within the subtribe Vrieseinae. Our results point to a broad occurrence of secretion associated with bracteal scales in inflorescences of Tillandsioideae. Secretory function is strongly related to trichomes of the adaxial surface, whereas the indumentum of the abaxial side is lacking or likely associated with water absorption; the latter case is especially related to small, xeric plants. Exudates might engage in colleter-like roles, protecting against desiccation, high-radiation and herbivores. Directions for future research are presented.

2.
Braz J Microbiol ; 54(3): 1885-1897, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37322328

RESUMO

The phytotelmata is a water-filled tank on a terrestrial plant, and it plays an important role in bromeliad growth and ecosystem functioning. Even though previous studies have contributed to elucidate the composition of the prokaryotic component of this aquatic ecosystem, its mycobiota (fungal community) is still poorly known. In the present work, ITS2 amplicon deep sequencing was used to examine the fungal communities inhabiting the phytotelmata of two bromeliads species that coexist in a sun-exposed rupestrian field of Southeastern Brazil, namely Aechmea nudicaulis (AN) and Vriesea minarum (VM). Ascomycota was the most abundant phylum in both bromeliads (57.1 and 89.1% in AN and VM respectively, on average), while the others were present in low abundance (< 2%). Mortierellomycota and Glomeromycota were exclusively observed in AN. Beta-diversity analysis showed that samples from each bromeliad significantly clustered together. In conclusion, despite the considerable within-group variation, the results suggested that each bromeliad harbor a distinct fungi community, what could be associated with the physicochemical characteristics of the phytotelmata (mainly total nitrogen, total organic carbon, and total carbon) and plant morphological features.


Assuntos
Bromeliaceae , Ecossistema , Brasil , Bromeliaceae/microbiologia , Água , Carbono
3.
AoB Plants ; 12(5): plaa046, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33033591

RESUMO

Pollinators are important drivers of angiosperm diversification at both micro- and macroevolutionary scales. Both hummingbirds and bats pollinate the species-rich and morphologically diverse genus Vriesea across its distribution in the Brazilian Atlantic Forest. Here, we (i) determine if floral traits predict functional groups of pollinators as documented, confirming the pollination syndromes in Vriesea and (ii) test if genetic structure in Vriesea is driven by geography (latitudinal and altitudinal heterogeneity) or ecology (pollination syndromes). We analysed 11 floral traits of 58 Vriesea species and performed a literature survey of Vriesea pollination biology. The genealogy of haplotypes was inferred and phylogenetic analyses were performed using chloroplast (rps16-trnk and matK) and nuclear (PHYC) molecular markers. Floral traits accurately predict functional groups of pollinators in Vriesea. Genetic groupings match the different pollination syndromes. Species with intermediate position were found between the groups, which share haplotypes and differ morphologically from the typical hummingbird- and bat-pollinated flowers of Vriesea. The phylogeny revealed moderately to well-supported clades which may be interpreted as species complexes. Our results suggest a role of pollinators driving ecological isolation in Vriesea clades. Incipient speciation and incomplete lineage sorting may explain the overall low genetic divergence within and among morphologically defined species, precluding the identification of clear species boundaries. The intermediate species with mixed floral types likely represent a window into shifts between pollinator syndromes. This study reports the morphological-genetic continuum that may be typical of ongoing pollinator-driven speciation in biodiversity hotspots.

4.
J Biogeogr ; 47(1): 261-274, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32063663

RESUMO

AIM: Understanding the complex interaction and relative contributions of factors involved in species and trait diversification is crucial to gain insights into the evolution of Neotropical biodiversity. Here, we investigated the drivers of morphological variation in bromeliads along a latitudinal gradient in a biodiversity hotspot. LOCATION: Atlantic Forest, Brazil. TAXON: A species complex in the genus Vriesea (Bromeliaceae). METHODS: We measured shape and size variation for 208 floral bracts and 176 leaves in individuals from 14 localities using geometric morphometrics. We compiled data for two chloroplast regions (matK and trnL-F) from 89 individuals to assess genetic diversity, population structure and phylogenetic relationships. We tested the influence of climate, altitude and genetic distance on morphological traits using linear statistical models. RESULTS: Temperature seasonality is a main driver of floral bract shape. Together with precipitation, it also explains changes in leaf size across the latitudinal gradient. Shifts in morphological traits are correlated with genetic structure and partly support the recent taxonomic delimitation proposed for the species complex. The species started to diversify in the Pliocene ca. 5 Mya. We detected a phylogeographical break in species distribution into northern and southern clades between the Bocaina region and the southern portion of the Atlantic Forest. MAIN CONCLUSIONS: We identify how geography and environmental changes through time shape floral bracts and leaves in similar ways. At highly seasonal sites with lower annual precipitation (in the southern subtropical portion of the Atlantic Forest), leaves are larger and floral bracts are wide-elliptic, making them better suited for increased water accumulation. In contrast, at less seasonal sites (in the tropical north, where rainfall is more abundant and temperatures are higher), leaves are narrower and floral bracts are lanceolate-shaped, facilitating water drainage. The biogeographical break we identified suggests a role of tectonic activity and climatic oscillations in promoting species divergence and diversification.

5.
Am J Bot ; 106(7): 971-983, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31247130

RESUMO

PREMISE: Despite the efforts to understand the processes that shape neotropical biodiversity, the complexity of certain biomes, such as the Atlantic Forest (AF), prevents the generalization of patterns. Initially, ecological niche modeling (ENM), with phylogeographic studies, identified past stable areas in the central and northern portions of the AF, while the southern portion was thought to be highly fragmented. Here, we examined the phylogeography, historical patterns, genetic diversity, and population structure of Vriesea incurvata, an endemic species of the southern portion of the AF. METHODS: We evaluated 149 individuals using two plastid DNA regions (cpDNA) and 13 nuclear microsatellite markers (nuSSRs) to access the historical patterns, genetic diversity, and structure of V. incurvata populations. We also conducted historical demography and ENM analyses. RESULTS: We found moderate to high genetic diversity and low population structure for both genomes. The cpDNA network revealed high haplotype sharing. The ENM suggested no drastic changes in suitable areas for V. incurvata occurrence, corroborating the finding of no phylogeographic structure. CONCLUSIONS: Contrary to some studies, our results indicate that the southern AF was a historically stable climate region for V. incurvata occupation after southward colonization by the species. Past climatic changes probably did not cause structuring among its populations.


Assuntos
Bromeliaceae/genética , Ecossistema , Fluxo Gênico , Variação Genética , Modelos Biológicos , Brasil , Clima , Haplótipos , Filogeografia
6.
Planta ; 250(1): 319-332, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31030328

RESUMO

MAIN CONCLUSION: Depending on the N source and plant ontogenetic state, the epiphytic tank-forming bromeliad Vriesea gigantea can modulate aquaporin expression to maximize the absorption of the most available nitrogen source. Epiphytic bromeliads frequently present a structure formed by the overlapping of leaf bases where water and nutrients can be accumulated and absorbed, called tank. However, this structure is not present during the juvenile ontogenetic phase, leading to differences in nutrient acquisition strategies. Recent studies have shown a high capacity of the bromeliad Vriesea gigantea, an epiphytic tank-forming bromeliad, to absorb urea by their leaves. Since plant aquaporins can facilitate the diffusion of urea through the membranes, we cloned three foliar aquaporin genes, VgPIP1;1, VgPIP1;2 and VgTIP2;1 from V. gigantea plants. Through functional studies, we observed that besides water, VgTIP2;1 was capable of transporting urea while VgPIP1;2 may facilitate ammonium/ammonia diffusion. Moreover, aiming at identifying urea and ammonium-induced changes in aquaporin expression in leaves of juvenile and adult-tank plants, we showed that VgPIP1;1 and VgPIP1;2 transcripts were up-regulated in response to either urea or ammonium only in juvenile plants, while VgTIP2;1 was up-regulated in response to urea only in adult-tank plants. Thereby, an ontogenetic shift from juvenile to adult-tank-forming-plant appears to occur with metabolic changes regarding nitrogen metabolism regulation. Investigating urea metabolism in wild species that naturally cope with organic N sources, such as V. gigantea, may provide the knowledge to modify nitrogen use efficiency of crop plants.


Assuntos
Aquaporinas/metabolismo , Bromeliaceae/metabolismo , Nitrogênio/metabolismo , Ureia/metabolismo , Aquaporinas/genética , Bromeliaceae/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Água/metabolismo
7.
Appl Plant Sci ; 6(10): e01184, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30386710

RESUMO

PREMISE OF THE STUDY: Expressed sequence tag-simple sequence repeat (EST-SSR) markers were isolated for Vriesea carinata, an endemic bromeliad from the Brazilian Atlantic Forest. These SSR loci may be used to investigate the genetic diversity and population structure of this species and related bromeliads. METHODS AND RESULTS: Based on the transcriptome data of V. carinata, 30 primer pairs were designed and selected for initial validation. Of these primer pairs, 16 generated suitable SSR loci in 69 individuals. The number of alleles per locus ranged from one to 13; the levels of observed and expected heterozygosity per locus ranged from 0.000 to 1.000 and from 0.000 to 0.935, respectively. All loci produced heterologous amplification. Transferability of the loci was tested in 15 species belonging to three Bromeliaceae subfamilies. CONCLUSIONS: The developed EST-SSR markers revealed polymorphism in the four studied populations and could be useful to investigate the genetic diversity of V. carinata and related species. The markers may also be suitable for novel gene annotation and discovery.

8.
An. acad. bras. ciênc ; 89(4): 3067-3082, Oct.-Dec. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-886832

RESUMO

ABSTRACT Pollen morphology characterization is important in taxonomy, conservation and plant breeding, and pollen viability studies can support breeding programs. This study investigated pollen morphology and male fertility in 18 species of Bromeliaceae with ornamental potential. For morphological characterization, pollen grains were acetolyzed and characterization of exine was done using scanning and transmission electron microscopy. Pollen viability was investigated by in vitro germination and histochemical tests. Species belonging to Aechmea and Ananas genera presented medium size pollen, except for Ae. fasciata, with large pollen. Al. nahoumii, P. sagenarius and the Vriesea species analyzed showed large pollen, except for V. carinata, with very large pollen. Pollen of Aechmea, Ananas and P. sagenarius presented bilateral symmetry, diporate, exine varying from tectate to semitectate. Al. nahoumii and Vriesea species presented pollen with bilateral symmetry, monocolpate; exine was semitectate, reticulate and heterobrochate. Germination percentage and tube growth were greater in SM and BKM media. Histochemical tests showed pollen viability above 70% for all species, except for Ananas sp. (40%). Pollen morphology is important for the identification of species, especially in this family, which contains a large number of species. High rates of viability favor fertilization and seed production, essential for efficient hybrid production and conservation.


Assuntos
Pólen/fisiologia , Bromeliaceae/fisiologia , Pólen/crescimento & desenvolvimento , Pólen/ultraestrutura , Imuno-Histoquímica , Microscopia Eletrônica , Bromeliaceae/classificação , Bromeliaceae/ultraestrutura
9.
Ann Bot ; 120(5): 681-692, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-28510657

RESUMO

Background and Aims: The functional relevance of heteroblasty, an abrupt morphological change in the ontogeny of a considerable number of angiosperm species, is still largely unresolved. During the ontogeny of many epiphytic Tillandsioids (Bromeliaceae), such a change occurs when small individuals transform into larger, tank-forming individuals that are capable of external water storage. Apart from its fundamental effect on plant water relations, the associated transition from narrow to broader leaves also affects plant architecture. The morphological changes and their effect on light interception may be especially relevant for heteroblastic species in the moist understorey, which are expected to be limited primarily by light. Methods: A functional structural plant model (Yplant) was used to construct digital replicas of atmospheric and tank-forming individuals of four species, two of them naturally growing in exposed conditions and two occurring in understorey sites. This allowed the determination of leaf display efficiencies as well as a systematic analysis of leaf architectural traits and their effect on light interception. Key Results: Modifying existing plant morphologies showed that broader leaves cause more self-shading within the plant. This supports the hypothesis that species from the light-limited understorey benefit from the early atmospheric life form through increased light capture. Modelling plant morphology that continuously followed the ontogenetic trajectories of the leaf architectural traits revealed that the rising total leaf number in atmospheric individuals constantly increased self-shading. Therefore, at a certain ontogenetic stage, a tipping point was reached when the tank form was even favourable in terms of light capture as it was associated with fewer leaves. Conclusions: The effects of changes in leaf morphology and leaf architecture on plant light capture may explain the common occurrence of heteroblastic species in the understorey of Neotropical forests, which does not negate a simultaneous positive effect of heteroblasty on plant water relations.


Assuntos
Bromeliaceae/crescimento & desenvolvimento , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Bromeliaceae/anatomia & histologia , Simulação por Computador , Florestas , Modelos Biológicos , Folhas de Planta/anatomia & histologia , Árvores
10.
J Anim Ecol ; 86(4): 790-799, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28342283

RESUMO

Predation is one of the most fundamental ecological processes affecting biotic communities. Terrestrial predators that live at ecosystem boundaries may alter the diversity of terrestrial organisms, but they may also have cross-ecosystem cascading effects when they feed on organisms with complex life cycles (i.e. organisms that shift from aquatic juvenile stages to terrestrial adult stages) or inhibit female oviposition in the aquatic environment. The predatory ant Odontomachus hastatus establishes its colonies among roots of Vriesea procera, an epiphytic bromeliad species with water-filled tanks that shelters many terrestrial and aquatic organisms. Ants may impact terrestrial communities and deter adult insects from ovipositing in the water of bromeliads via consumptive and non-consumptive effects. Ants do not forage within the aquatic environment; thus, they may be more efficient predators on terrestrial organisms. Therefore, we predict that ants will have stronger effects on terrestrial than aquatic food webs. However, such effects may also be site contingent and depend on the local composition of food webs. To test our hypothesis, we surveyed bromeliads with and without O. hastatus colonies from three different coastal field sites in the Atlantic Forest of southeast Brazil, and quantified the effect of this predatory ant on the composition, density and richness of aquatic and terrestrial metazoans found in these bromeliads. We found that ants changed the composition and reduced the overall density of aquatic and terrestrial metazoans in bromeliad ecosystems. However, effects of ants on species diversity were contingent on site. In general terms, the effects of the ant on aquatic and terrestrial metazoan communities were similar in strength and magnitude. Ants reduced the density of virtually all aquatic functional groups, especially detritivore insects as well as metazoans that reach bromeliads through phoresy on the skin of terrestrial animals (i.e. Ostracoda and Helobdella sp.). Our results suggest that the cross-ecosystem effect of this terrestrial predator on the aquatic metazoans was at least as strong as its within-ecosystem effect on the terrestrial ecosystem, and demonstrates that the same predator can simultaneously initiate cascades in multiple ecosystems.


Assuntos
Formigas , Cadeia Alimentar , Animais , Brasil , Bromeliaceae , Ecossistema , Comportamento Predatório
11.
Am J Bot ; 101(7): 1167-1175, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25030351

RESUMO

• Premise of the study: Knowledge about genetic variability in plant populations is one of the main branches of conservation genetics, linking genetic data to conservation strategies. Vriesea minarum is a bromeliad endemic to the Iron Quadrangle region (southeastern Brazil), occurring on mountaintop rock outcrops. It is listed as endangered due to habitat loss, particularly from iron ore mining. Thus, determining the structure and genetic diversity of V. minarum populations could help develop strategies to conserve the species.• Methods: We studied the genetic structure of 12 populations of V. minarum using 10 microsatellite loci transferred from other species of Bromeliaceae. Statistical analyses to compare and describe the genetic diversity of each population were performed, and genetic structure within and among populations, isolation by distance, and Bayesian structure were also analyzed.• Key results: Our results show high inbreeding (GIS = 0.376) and low population structure (FST = 0.088), possibly related to high gene flow due to great pollinator efficiency and/or efficient seed dispersal, thus leading to high connectivity among populations of these fragmented rock outcrops. Two clusters were observed, corresponding to the basins of rivers São Francisco and Doce.• Conclusions: Gene flow among populations is high but, given the rate of habitat loss to mining, most populations are vulnerable and will become increasingly isolated if no action is taken to preserve them. Thus, conservation of this species depends on in situ and ex situ actions, such as controlling overexploitation and creating a germoplasm bank.

12.
Plant Sci ; 210: 214-23, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23849128

RESUMO

The miRNAs play important roles in regulation of gene expression at the post-transcriptional level. A small RNA and RNA-seq of libraries were constructed to identify miRNAs in Vriesea carinata, a native bromeliad species from Brazilian Atlantic Rainforest. Illumina technology was used to perform high throughput sequencing and data was analyzed using bioinformatics tools. We obtained 2,191,509 mature miRNAs sequences representing 54 conserved families in plant species. Further analysis allowed the prediction of secondary structures for 19 conserved and 16 novel miRNAs. Potential targets were predicted from pre-miRNAs by sequence homology and validated using RTqPCR approach. This study provides the first identification of miRNAs and their potential targets of a bromeliad species.


Assuntos
Bromeliaceae/genética , MicroRNAs/genética , Sequência de Bases , Brasil , Bromeliaceae/metabolismo , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Genes de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/química , MicroRNAs/metabolismo , Conformação de Ácido Nucleico , RNA de Plantas/química , RNA de Plantas/genética , RNA de Plantas/metabolismo , Alinhamento de Sequência , Análise de Sequência de RNA , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...